

A S-N-based Cohesive Element for

Delamination Propagation in Composite Materials

Ανάπτυξη Συνεκτικών Στοιχείων (Cohesive Elements) Βασισμένων σε Αποτελέσματα Καμπυλών Κόπωσης S-N για την Μοντελοποίηση Διαστρωματικής Αποκόλλησης σε Σύνθετα Υλικά

Anatoli A. Mitrou, AM 246982

Diploma Thesis

Supervising Professor: Prof. Vassilis Kostopoulos **Technical Supervisor:** Dr. Carlos G. Dávila

OBJECTIVE

Delamination in composites is accompanied by complex damage mechanisms such as fiber bridging and matrix cracking. These mechanisms increase the critical energy release rate, G_c , required to propagate the crack. This increase in G_c when plotted against the crack extension Δa is referred to as the resistance curve (R-curve).

An experimental study was conducted by Yao¹ to quantify the significance of fiber bridging in the delamination growth in multidirectional composite laminates by comparing quasi-static and fatigue R-curves.

The objective of this thesis was to verify the capabilities of a recently proposed cohesive fatigue damage model² by comparing the numerical predictions of Yao's experiments to the test data.

Cohesive Zone Model

Cohesive elements, are zero thickness interface elements that represent the separation with a traction-separation law.

Fatigue Damage model:

- Same damage envelope for QS and fatigue
- Based on normalized S-N Curve
- Damage accumulates at rate dictated by a function:

$$\frac{dD}{dN} = C \left(\frac{\lambda}{\lambda^*}\right)^{\beta}$$

The CZM is implemented in a UMAT in Abaqus for FE analysis

R-Curves

Fatigue fracture: Experimental procedure described by Yao

MAIN WORK

- 1. Programmed a UMAT user-written subroutine of Dávila's model.
- 2. Developed an FEM model of a double cantilever beam specimen.
- 3. Performed analyses for:
 - QS characterization of interfaces (QS R-curve)
 - Fatigue propagation rates and Rcurve modeling for R=0.1 and R=0.5

CONCLUSIONS & FUTURE WORK

The numerical results indicate that:

- The Quasi-Static (QS) and Fatigue R-curves can be modeled using a superposition of cohesive laws and the proposed CZM.
- The Paris Law for short cracks (exponent and pre-factor) can be accurately predicted.

Future work:

As errors are observed for longer crack extensions, it is proposed to:

- Verify the effect of Quasi-static (QS) characterization of the R-curve on the errors
- Evaluate the effect of the Fatigue mode's parameters on the errors

Fatigue results:

Fatigue R-curve:

Overprediction of G_c for short crack extensions VS **Underprediction** of G_c for longer crack extensions

Typical propagation rate results:

Applied Mechanic Laborato